
People good a programming, but poor code still creating loss in economy

Need to practice SE before getting good at it

Coaches integral to success of team in sports and SE-

What is SE? Multiplayer multiversion programming

Want to create something that has:

Predictable-

Repeatable-

Reliable-

High quality-

Cost effective-

Programmer: writes code

SW: solves problems

SE > Programming

Toolchains change, process does not-

Rockstar Dev: fallacy that a single developer can be 10x a regular one, who knows everything

Most important thing about SE: Communication

People quality > experience -

Lecture 1 - What is SE?
Monday, September 26, 2022 4:47 PM

 CSE 110 Page 1

Be conservative in what you do, be liberal in what you accept from others

CS Ladder:

Low level: math, binary

More subjective○

High level: users, graders

More predictable○

Skill plateau: after reaching "acceptable" performance, more practice doesn’t lead to improvement

Do something small many times-

Avoid trying to deliver a perfect project-

Training the Brain:

Not about memorizing things, understanding is more important-

Need to maintain good physical and mental health to train

Sleep○

Energy○

Focus○

Health○

Attitude○

-

Don't focus too much on good gear, best gear only works if you can use it well

But: given the importance of typing, must have god typing skills, good keyboard○

-

No such thing as maximum productivity

Work at your rhythm○

-

Multitasking very inefficient

Yak shaving (doing work to get ready to do work) != productivity○

-

Avoiding the pull of shiny new tools

Simple and complex solutions can solve the same problem-

Promotions awarded to complex solutions-

Sometimes reach for new tools, but often rely on old tools for stability-

No need to switch tools often, try to master before evaluating-

New tools more dangerous than old tools

Why? More satisfaction from using newer tools, feel like you did something "cool"▪

-

Debugging: not just a technical process

Reasoning, stepping back > hammering out code-

Avoid going straight to stackoverflow-

Lecture 2 - Self Responsibility
Wednesday, September 28, 2022 5:44 PM

 CSE 110 Page 2

Knowing all the things mentality

Brain has limited amount of capacity-

Not helpful for confidence, leads to imposter syndrome-

Team dynamics

Groups evolve and should be self-aware to become high functioning-

Communication is critical-

Team size

Too many: overwhelmed by volume○

Too few: too much work per person○

Organize under hierarchies to organize management○

-

Team Composition

Specialist trend: each person has unique roles that they excel at○

Generalist trend: each person can do a little of everything (typically bad)○

Avoid dominance hierarchy: coding at top with QA and docs at the bottom○

-

Organization

Pathological: Reward driven, dog eat dog system○

Bureaucracy: Rules driven, fairness / no specialized treatment○

Generative: Too much autonomy can become runaway train○

Artifacts can values can indicate what organizational method a group prefers○

Conway's law:

Small Distributed Teams -> Modular Service Architectures▪

Large Collocated Teams -> Monolithic Architecture▪

○

-

5 Things for Great Teams

Psychological safety (paramount) : need to be comfortable taking risks

Model (behavior)▪

Allow for failure▪

Avoid blame▪

Empathize▪

Avoid cliques▪

○

Dependability○

Structure and clarity○

Meaning of work○

Impact of work○

-

Communication

Signal degradation is the problem in communication-

Learned activity-

Avoid mob programming (bunching up)-

Breaks down when one person breaks down the network-

Lecture 3 - Group Dynamics
Monday, October 3, 2022 5:00 PM

 CSE 110 Page 3

Psychological Safety

Integrity : ethics with candor and without retaliation-

Innovation : fearless collaborative creativity, shared success-

Inclusion : authentic membership and respect-
What can go wrong:

Group think : fear of ridicule-

Project risk and quality reduction : similar to group think-

Poor retention : equation of $ does not eliminate requirements for satisfaction-

Communication

Each person's prefers different communication methods-

Provide objections and advice when appropriate and when delivered correctly-

Effective teams will have diverse conversation patterns -

Don’t make it personal-

Practice makes better-

Empathize, especially when things go wrong-

Dependability

Structure and Clarity

Alignment over autonomy : pick a direction to all go in-

No correct way to do structure-

Meaning and Impact of Work

Everyone's work contributes to the whole project, NASA janitor helped get US to the moon-

Geniuses and Hiding

Not helpful to bring up how another company does things-

But also don't hide and avoid detection-

Bus factor: number of people who can leave before project is doomed-

Managers and Coaches

Additive: Does work and manage-

Multiplicative: Does less work but allows other people to accomplish more-

Subtractive: Makes things worse-

Lecture 4 - Group Responsibility
Wednesday, October 5, 2022 5:08 PM

 CSE 110 Page 4

Goofus and Gallant

Goofus (the one not to be)

Tries to code as quickly as possible○

Only thinks about what the boss wants○

Think doesn’t need to consult other people○

Always uses the hottest tool no matter what○

Own personal hackathon○

10x rockstar and works alone○

Doing many things at once○

No time to write docs○

Ships code as soon as it runs○

-

Gallant (the one to try to be)

Does some research before diving in○

Thinks about what the user needs as well○

Talks to end users, team○

Pick the best tool for the job and team○

Structured and practice following○

Part of the team and shares with the team○

Focuses on one thing○

Writes docs as he does○

Ships code after testing it well○

-

Lecture 5 - Recap of Self and Group

Responsibility
Friday, October 7, 2022 5:01 PM

 CSE 110 Page 5

Problems:

Simple: puzzles, only one solution, very constrained-

Complicated: problems, may be many solutions, some constraints-

Complex: mess, requirements are not clear, few constraints-

Project: CRUD App

Create-

Read-

Update-

Delete-

App is complicated but not complex

Complicated things can be solved with processes and patterns-

Complex things have unknown things, processes and patterns are not as useful-

Minimize unnecessary solution complexity-

Local first software

Resides on user's device-

But also collaborates with others-

Changes the traditional relationship with the cloud-

Ideals:

No waiting for data○

Work is not trapped on one device○

Network is optional○

Seamless collaboration with colleagues○

Long now: will work even after support stops○

Security and privacy built in by default○

Users retain ultimate ownership of content○

-

Self-contained software

Support maximum capability while offline○

Sync and store architecture○

-

Project Domain: Personal information management

Lecture 5 - Problems and Projects
Friday, October 7, 2022 5:10 PM

 CSE 110 Page 6

Project Domain: Personal information management

Posts

Tweets, blog posts, etc○

-

Pictures-

BROAD DOMAIN-

Conduct research and narrow a design-

Technical: Core technologies

Raw Web Platform

HTML○

CSS○

JavaScript○

-

Does not NEED to be a website, can be desktop app-

Architecture: CRUD

Local first, remote second-

Can add 3rd party destinations later

Should create abstraction layer to future proof○

-

Avoid feature explosion. Start simple then increase complexity.

Plan ahead-

Start early, don’t wait for things to come-

Software Activities and Ordering

Software has life cycle: created, maintained, dead-

Factory thinking: build and stamp out many copies, production engineering-

Design thinking: design and create unique solutions, design engineering-

Bottom up thinking: solve the low level problems before thinking about the top level ideas-

Top down thinking: create the top level ideas before solving the low level problems-

Linear approach: perfect one idea at a time-

Iterative approach: try a few ideas in one iteration, keep improving them over time-

Balance between cost, scope, schedule, quality-

Lecture 6 - Design Engineering
Monday, October 10, 2022 5:02 PM

 CSE 110 Page 7

Domain Driven Design

Must understand domain to design project for specific domain-

Pitch requirements

First principles: what does this app accomplish?-

Research: look at other projects, etc-

User thinking: What are the users? What requirements do they have?-

Feature thinking: what features does the project have?

Flow charts: show how the app works○

UML Diagram○

Event modeling○

Class charts○

-

Systems architecture: how does the user, app, system, cloud interact?-

Wireframes: sketch how the app will look-

Organizational structures: github, team, etc-

Exploration: create small tests to verify the feasibility of sub components-

Tensions and Tradeoffs:

Tradeoff between people, cost, features-

Always will be tradeoffs-

Avoid appeals to popularity: "everyone is using ___ so it must be the best"

Lecture 7 - DDD, Pitch, Tensions and Tradeoffs
Wednesday, October 12, 2022 5:00 PM

 CSE 110 Page 8

Deadlines:

Never can finish a project exactly on the anticipated date-

Set project complexity so that you can finish early and use the extra time if needed-

Time pressure: poor code when under pressure-

Scope:

Dietzler's Law

80% of what the user wants is fast and easy○

Next 10% is possible but difficult○

Last 10% is impossible○

-

Common people risks:

Weak personnel ○

Heroics ○

Negative personalities ○

Wishful thinking ○

Politics ○

Inappropriate work space ○

Lack of buy-in, patrons, etc.○

-

Quality:

When deciding, avoid focusing on only the outcome. Must consider the value of outcome against risks. -

Cone of uncertainty:

Process types and methodology: want to not be miserable

Waterfall: Set of steps in linear fashion. Plan then execute then deliver. -

Incremental design: implement one item at a time, without need for an overall goal.-

Agile: Break large problem into small tasks, try each one at a time-

Lecture 7 - Process Models
Wednesday, October 12, 2022 5:29 PM

 CSE 110 Page 9

Why practice SE?

Costs of poor software-

Need to focus on problems and users rather than technology-

What is SE?

Multi-Person construction of Multi-Version programs-

SE > programming-

Consists of some technical problems, but mainly social ones-

How to best do SE?

Start at the problem, then work to a solution-

Avoid getting caught in tech details-

Understand SE is a people problem, tools are not the most important factor-

Start with yourself

Train the brain○

Focus on good health, sleep, energy -> focus and good emotional state○

Gear is important, but is not the most important○

No need to "grind" or 996○

Understand your work rhythms○

Understand your work load limit○

Confidence is not about how much you know\○

Embrace failure○

-

What to do/ What not to do?

Don't try to be a 10x/rockstar programmer: a single rockstar can't carry a team to success-

Don't become a -10x programmer: don’t do more harm than good-

Avoid focusing on tools, use the right tool for the task-

Avoid yak shaving: doing work to get ready to do work-

On groups

Communication: becomes difficult as more team members-

Composition: more diversity is better, aim for specialists rather than generalists-

Organization: different organizational methods have their pros and cons-

5 Things for great teams:

Psychological safety (paramount) : need to be comfortable taking risks

Model (behavior)▪

Allow for failure▪

Avoid blame▪

Empathize▪

Avoid cliques▪

○

Dependability○

Structure and clarity○

Meaning of work○

Impact of work○

-

Problems:

Simple: puzzles, only one solution, very constrained-

Complicated: problems, may be many solutions, some constraints-

Complex: mess, requirements are not clear, few constraints-

Process models: want to not be miserable

Waterfall: Set of steps in linear fashion. Plan then execute then deliver. -

Incremental design: implement one item at a time, without need for an overall goal.-

Agile: Break large problem into small tasks, try each one at a time-

Midterm 1 Notes
Thursday, October 13, 2022 7:13 PM

 CSE 110 Page 10

Defining SE

SE >>> Coding○

Multiplayer multiversion programming○

-

Developer Outwards

Improve quality of developer outweighs process, tech , tool○

Improvement from mindset and realistic time/practice○

10x developer takes time and effort○

-

Process models

Top down: Big Design Up Front○

Bottom up: No Design Up Front○

Contextual use○

-

Engineering Pragmatism

Tradeoffs and Iron Triangle○

Facing cone of uncertainty○

Tools first or solutions first?○

Solve the problems we face now, not the problems we might face○

Balancing risks and thinking in bet○

What we learn may change and finding unchanging truths underneath is true aim○

-

Midterm 1 Recap
Monday, October 17, 2022 5:07 PM

 CSE 110 Page 11

Deciding what to build?

You?-

Users? Who?-

Both?-

The premise

Understand your users and their needs-

UCD: User centered design

Emphasis on the user during the constructive process-

Figure out what the Users want:

You != Your users○

Users != your designers○

But, Users can't always know what they need

More page views, time on site, etc = better | aka line go up▪

○

Must be employed with extreme caution○

Sampling

Persona generation

Beware of personas becoming stereotypes□

▪

user stories

Agile concept□
As a ___ I want to ___ in order to ___□

▪

customer journeys

Try to understand your software lives in your user's world and is not their whole world□

▪

Observation:

direct observation□
Indirect observation via analytics□

▪

Interviews▪

○

-

Document decisions made in Architectural Decision Records

Illities: level 0 decisions

Utilities: does the system do what the user wants▪

Availability: is there access to the system ▪

Performance: access within acceptable time▪

Accessibility: able to use the functions▪

Usability: able to use the system successfully▪

Satisfaction: enjoyment of using the functions▪

○

User mental model != Your mental model

System model can be hidden from the user's mental model▪

○

-

Lecture 8 - User Centered Development
Monday, October 17, 2022 5:01 PM

 CSE 110 Page 12

Why Agile?

Want SE to be flexible and react to changes, to be nimble and quick-

Fix resources and time but be flexible on scope-

Came from poor state of affairs in dev affairs

Consequence of dot com crash○

-

Adoption driven partially by pros, but also by social proof, FOMO-

What is Agile?

Agile != speed; Agile is to move properly not necessarily quickly-

Perform iterations of waterfall method many times-

Mindset:

Flexibility○

Pragmatic○

Openness○

-

Values:

Individuals and interaction over process and tools○

Working software over comprehensive documentation

But also make sure to document well they are compliments▪

○

Customer collaboration over contract negotiation○

Responding to change over following a plan○

-

Principles:

Speed, user focus, communication, self-organization, good tech and design, keeping it simple and dealing with change○

-

Practices:

Majority people use Scrum○

-

Tools:

Github Issues/Projects, Jira, Trello

Most tools will do the same things anyways, some more overkill than others▪

○

Burn down chart, Kanban board

Track the state of things▪

○

-

Process and Ceremonies:

Daily standup : make sure everyone knows what is happening○

Sprint planning : pick an items to work on for that time period○

Sprint Review : show what was accomplished, take stock of where the project is○

Retrospective : reflect on how the last time period went○

Andon cord : signal to stop everything and figure out what's going wrong○

-

What to do?

User stories:

As a ___ user I want ___ to get ___○

!= tasks○

-

Tasks

Not too small or large○

Need to evaluate the size of each task and distribute accordingly○

Learn from previous sprints○

-

Product backlog

Cumulative list of deliverables○

Don't make too many, order by priority○

What must we do○

What should we do○

What could we do○

What won't we do○

-

Sprints

Iterations of the process, 1-2 week size○

-

Pros/Cons?

Use of all techniques are not always employed-

Lecture 9 - Agile Methodologies
Wednesday, October 19, 2022 4:56 PM

 CSE 110 Page 13

Problem -> Research -> Problem Definition -> Narrowing Down -> Solution

Alignment diagrams: Who/why will a user use the app? How can it be implemented?

Solve problems by understanding the users as real people

People won't use your project unless it's really useful-

Consider context of users using the software-

Start with the customer experience and work backwards to the technology-

Project Artifacts: Personas

Fictional character representing what the user needs, how they will benefit-

Try not to create stereotypes-

Project Artifacts: Journey maps

Journey of how the user gets through the experience-

Project Artifacts: User stories

As a ___ I want to ___ so that ___-

Design for the purpose of addressing user stories-

Tools

Miro: Drawing and design tool, can create diagrams and flowcharts. -

Git/Github: Git is file tracker, Github shares git repos online-

IDE (VSCode): Features vs speed-

Code grading -

Lecture 10 - Problem and Solution
Friday, October 21, 2022 4:51 PM

 CSE 110 Page 14

Need to have consideration for the libraries and dependencies that we install

Planning: significantly cheaper than coding

Plan from general to specific-

Requirements > code -

Want to code right away, but need to plan first-

Requirements

Who - the actor 1)

What - the action that the actor takes2)

When/Where - state of the system and actor's relation to it3)

Why - goal of the actor4)

How - means the action is done5)

Good Requirements

Measurable and precise requirements-

Must be quantitative things that can be measures-

Requirements to Specifications

How formal?

Depends on the user, governments will be more formal○

-

Create flowcharts / state machines?

Could be done by flow charts○

-

UML

Formal way to describe specifications○

Not widely used ○

-

Wireframing: Design user thinking, with some state logic1)

Storyboarding: showing how the user flows through the app2)

Key design principles:

Less is more-

Users don't read-

When existing expectations are not enough need guidance -

Avoid bricklaying, be an architect

Lecture 11 - Requirements and Planning
Monday, October 24, 2022 5:05 PM

 CSE 110 Page 15

Attention to detail at the beginning more impactful than attention to detail at the end

Idea: create a software factory

Create parts individually and verifying them and then deploying for testing or release-

Factory = tools (CI pipeline) and processes (checklists, human procedures)-

Manufacture = an instance of running code through the factory to make evaluation-

Faster quality factory means figuring out problems faster and producing new attempts

Make sure the order of steps will fail as early as possible-

Do shorter steps before longer steps-

Do important things first-

Build automation

Creating a process which creates the working application quickly-
Continuous Integration

Practice of creating many internal builds to test new features iteratively-
Continuous Deployment

Practice of continuous deployment of final releases-

Always have working deployable software-

Technologies

Build pipelines will depend on

Dependencies○

Needs of the products○

-

Example CI in various incremental steps:

Git push -> Deploy1)

Git push -> Unit tests -> Deploy2)

Git push -> Style enforcement -> Unit tests -> Deploy3)

Git push -> Style enforcement -> Unit tests -> Minimization -> Deploy4)

Steps:

Start with simple HTML page to practice pushing, issues, merging, deploying-

Explore each element before work

Throw that code away when done○

Avoid social proof (don't just take google at its word)○

Do hands on work rather than assess "feels"○

-

Work on each component type independently-

Work on integration of pieces-

Make sure everything is documented so anyone can run it-

Lecture 12 - Build Dev 1: CI/CD
Wednesday, October 26, 2022 5:02 PM

 CSE 110 Page 16

Def: Fundamental organization of a system, component's relationships to each other and the environment

Architecture s important things, whatever that is-

Stuff that's hard to change later-

Theory or design about how the system will be implemented

Breaking the app into pieces and how they relate to each other○

Affects user related things like: Performance, availability, security, maintainability, extensibility○

-

Lecture 13 - Architecture 1
Friday, October 28, 2022 4:57 PM

 CSE 110 Page 17

What does good code look like?

Readable-

Modular-

Simple-

Does what needs to be done-

Just enough dependencies-

SSoT: Single Source of Truth

Where to find the answer to all questions?-

Keep your plans on site-

Documentation-

Simplicity

Generally less is more-

Complex code may be more brittle

May not survive time○

-

Always be cleaning, fixing bugs, implementing TODOs, paying down technical debt-

Adapt and grow but guard against trendiness-

Repos

Max directory size: 10-20-

Clear directory naming-

Clear directory hierarchy-

Clear directory file grouping-

Prune branches when done-

Don't let issues pile up-

Actually evaluate pull requests-

Lecture 14 - Good Coding 1
Monday, October 31, 2022 5:00 PM

 CSE 110 Page 18

HTML

Use consistent style-

Validate the markup: HTML is very permissive with problematic code, need to validate markup to ensure correctness-

Aim for valid markup-

Use semantic markup: use <nav> over <div class="nav">-

Lecture 15 - Good Coding 2
Wednesday, November 2, 2022 5:11 PM

 CSE 110 Page 19

How to address big decisions?

Ex: What kind of app?

WebAPP?

Simgle page?○

Multi page?○

-

PWA?-

ElectronJS?-

Cordova?-

Chrome Extension?-

Architecture Decision Record: Captures key choices and why

Models

Model, View, Controller:

Model: How the application is presented○

View: How the user interacts with the application○

Controller: How the application functions below the hood○

-

Content, Structure, Presentation, Logic-

Progressive Enhancement:

Move from HTML to CSS to JS-

Degrades to standard site if JS or CSS is disabled-

Graceful Degradation:

Move from JS to CSS to HTML-

Prevents users from using app if JS is disabled-

Microservice: break app into many smaller components

Monolith: keep application as one large component

Architecture Astronauts: trying to solve the template for many problems rather than the exact problem

Lecture 16 - Architecture 2
Friday, November 4, 2022 5:00 PM

 CSE 110 Page 20

JavaScript

Not just for web apps-

Can be run in any host environment including servers, desktop, mobile-

Types:

Primitives: int, bool, string, undefined, null-

Composite/Reference: Object, Array*, Function-

Style:

Keep it consistent-

Use comments when code needs explanation-

Use comments as annotations (TODO, HACK, XXX)-

Lecture 17 - Good Coding 3
Monday, November 7, 2022 5:01 PM

 CSE 110 Page 21

What does quality mean?

Works

Bug free?○

-

Efficient

Memory○

CPU○

Load time○

Response time○

RAIL: response, animation, idle, load○

-

Easy to use-

User friendly-

How do we get quality?

Cannot prevent users from destroying the software-

More dependencies means more complexities and more bugs-

Testing pyramid

Many small tests for each part○

Less tests for larger parts○

Top level testing may be human○

Unit -> Service/API -> UI○

-

Use CI to create a quick way to run tests

Unit testing: write automated tests to check expected vs results○

-

Code Coverage

Trivial tests passing means little○

-

Code reviews: can't be too brief but not harsh, needs to be constructive-

Evaluate third party code, be careful using it-

Avoid General Browser Stats

Too many possible browsers and versions○

-

Load testing

Test how much traffic the app and servers can handle and determine fail points○

-

User acceptance and usability

You have to like your own app○

Friends have to like your app○

Unfriendliness should like your app from a user point of view○

Public … ○

-

Things will fall apart

Assume the worst, don’t hope for the best-

Test Driven Development

Create tests before implementation-

Tests should fail first and then be patched to pass-

Behavior Driven Development

Tends to have more English-like assertions-

May be more friendly to QA or business stake holders-

expect(…).toBe(…)-

Lecture 18 - Testing and Quality
Wednesday, November 9, 2022 5:00 PM

 CSE 110 Page 22

Lecture 19 -
Monday, November 14, 2022 5:03 PM

 CSE 110 Page 23

UCD: User centered design

Define: putting user at the center of design○

Laws and tips:

You are not the user▪

Users can't be your designer▪

○

Techniques

Create personas, user stories▪

○

Artifacts

Personas▪

User stories: As a <blank> I want to <do blank> in order to <blank> ▪

○

Illities: broad nonfunctional characteristics

Determines how users feel▪

○

-

Agile

Values: Communication, Feedback, Simplicity, Courage○

Daily Standup: Quick meeting of what you did and what you need to do○

Sprint: time box to conduct work, can be 1 - 6 weeks○

Sprint planning : start of sprint meeting to pick items to work on○

Story points: generalize time estimates to categories (S, M, L)○

Sprint review: end of sprint meeting to show and tell work○

Retrospective: A retrospective meeting allows us to look back at our previous sprint and discuss the high level

issues of Agile and what went right and wrong

○

-

Development

Take something small and roll it uphill, don’t make big thing and fix○

CI/CD pipeline: factory to stamp out software pieces

Many small steps quickly▪

Feel the hate before you automate: do step manually before deciding to automate▪

○

Avoid spreading: keep things together○

Teams should code as one: code owned by everyone○

Play styles

Mobbing: everyone working on the same code together, great at start or in emergencies▪

Pair: two people work together, code review as we go and teaching people as you go▪

Solo: working alone, need self-discipline to follow team rules▪

○

Tasks: break big tasks down until it’s the right size○

Definition of Done: must define all aspects of task, done iff they are all addressed○

Document as you go○

-

Requirements and Specifications

Planning is cheaper and faster than coding○

Need to get requirements from different people○

Visual representations: diagram down levels○

Technical debt: buildup of not doing work the right way

Must document major decisions in ADRs▪

Prevent hindsight doubt▪

○

Specifications depends on the project○

Use dependencies with caution, evaluate before use○

-

Testing and Quality

Test pieces -> test integration -> test users○

TDD: test driven development, write tests then write the implementation○

BDD: behavior driven development, write code to match behavior which better matches user expectations○

Acceptance testing: do people use the app?○

-

Midterm 2 Review
Wednesday, November 16, 2022 5:01 PM

 CSE 110 Page 24

